Determinant inequalities for Hadamard product of positive definite matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinantal inequalities for positive definite matrices

Let Ai , i = 1, . . . ,m , be positive definite matrices with diagonal blocks A ( j) i , 16 j 6 k , where A ( j) 1 , . . . ,A ( j) m are of the same size for each j . We prove the inequality det( m ∑ i=1 A−1 i ) > det( m ∑ i=1 (A (1) i ) −1) · · ·det( m ∑ i=1 (A (k) i ) −1) and more determinantal inequalities related to positive definite matrices.

متن کامل

Product of three positive semi-definite matrices

In [2], the author showed that a square matrix with nonnegative determinant can always be written as the product of five or fewer positive semi-definite matrices. This is an extension to the result in [1] asserting that every matrix with positive determinant is the product of five or fewer positive definite matrices. Analogous to the analysis in [1], the author of [2] studied those matrices whi...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Two inequalities for the Hadamard product of matrices

Correspondence: [email protected] Department of Mathematics, Dezhou University, Dezhou, 253023 Shandong, China Abstract Using a estimate on the Perron root of the nonnegative matrix in terms of paths in the associated directed graph, two new upper bounds for the Hadamard product of matrices are proposed. These bounds improve some existing results and this is shown by numerical examples. MS...

متن کامل

A New Determinant Inequality of Positive Semi-Definite Matrices

A new determinant inequality of positive semidefinite matrices is discovered and proved by us. This new inequality is useful for attacking and solving a variety of optimization problems arising from the design of wireless communication systems. I. A NEW DETERMINANT INEQUALITY The following notations are used throughout this article. The notations [·] and [·] stand for transpose and Hermitian tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2017

ISSN: 1331-4343

DOI: 10.7153/mia-20-36